Smart Statistik

Seputar Satistik dan Perancangan Percobaan

Asumsi-Asumsi ANOVA Satu Faktor

Asumsi untuk pengujian hipotesis yang didasarkan pada model ANOVA faktor tunggal sebenarnya berhubungan dengan nilai residual atau error (εij). Banyak referensi yang menyatakan bahwa ANOVA faktor tunggal cukup handal terhadap asumsi ini, misalnya Uji F tetap handal dan dapat diandalkan meskipun asumsi tidak terpenuhi. Meskipun demikian, tingkat kehandalannya sangat sulit diukur dan tergantung juga pada ukuran sampel yang harus seimbang. Uji F bisa menjadi sangat tidak dapat diandalkan apabila ukuran sampel tidak seimbang, apalagi jika ditambah dengan sebaran data yang tidak normal dan ragam tidak homogen. Oleh karena itu, saya sangat merekomendasikan untuk memeriksa terlebih dahulu asumsi ANOVA sebelum melanjutkan ke tahap analisis.

Bagaimana apabila kita menganalisis data yang sebenarnya tidak memenuhi asumsi analisis ragam? Apabila hal itu terjadi, maka kesimpulan yang diambil tidak akan menggambarkan keadaan yang sebenarnya bahkan menyesatkan! Dengan demikian, sebelum melakukan analisis ragam, terlebih dahulu kita harus memeriksa apakah data tersebut sudah memenuhi asumsi dasar analisis ragam atau belum.

Strategi umum untuk memeriksa asumsi ANOVA serta urutan asumsi yang harus diperiksa terlebih dahulu di bahas secara detail oleh Dean dan Voss (1999). Mereka menitikberatkan pada pengamatan plot residual, dengan alasan berikut: pemeriksaan plot residual lebih subjektif dibanding dengan pengujian formal dan yang lebih penting, plot residual lebih informatif tentang sifat dari masalah, konsekuensi, dan tindakan korektif yang bisa diambil.

Coba anda perhatikan model linier untuk rancangan RAL (One Way Anova) atau RAK berikut ini:

Model linier untuk RAL (One Way Anova):

Yij = μ + τi + εij.

dan model linier untuk RAK:

Yij = μ+ τi + βj + εij,

dimana εij ≈ NIID(0, σ2)

NIID = Normal, Independent, Identically Distributed dengan rata-rata 0 dan ragam σ2

Dalam prakteknya, makna yang tersirat dari model tersebut adalah:

  • Data pengamatan dari setiap kelompok perlakuan berasal dari populasi normal/berdistribusi normal (ini diperlukan sehingga εij
    terdistribusi secara normal).
  • Semua kelompok perlakuan mempunyai ragam yang homogen (ini diperlukan sehingga εij akan memiliki ragam homogen untuk setiap taraf perlakuan, i).
  • Unit satuan percobaan ditentukan dan ditempatkan secara acak pada setiap kelompok perlakuan (ini diperlukan sehingga εij
    independen (saling bebas) satu sama lain).
  • Pengaruh dari faktor perlakuan (τi) dan lingkungan (βj) dan galat (εij) bersifat aditif, maksudnya tinggi rendahnya respons semata-mata akibat dari pengaruh penambahan perlakuan dan atau kelompok. Nilai Respons (Yij) merupakan nilai rata-rata umum (μ) ditambah dengan penambahan dari perlakuan (τi)
    dan galat (εij).

Dengan demikian, asumsi-asumsi yang harus dipenuhi dalam melakukan analisis ragam adalah, Normalitas, homoskedastisitas (kehomogenan ragam), Independensi (kebebasan galat), dan Aditif.

1. Normalitas

Normalitas berarti nilai residual (εij) dalam setiap perlakuan (grup) yang terkait dengan nilai pengamatan Yi harus terdistribusi secara normal. Jika nilai residual terdistribusi secara normal, maka nilai Yi pun akan berdistribusi normal. Apabila ukuran sampel dan varians sama, maka uji ANOVA sangat tangguh terhadap asumsi ini. Dampak dari ketidaknormalan tidak terlalu serius, namun apabila ketidaknormalan tersebut disertai dengan ragam yang heterogen, masalahnya bisa menjadi serius!

1.1. Penyebab Ketidaknormalan

Dalam praktiknya, jarang sekali ditemukan sebaran nilai pengamatan yang mempunyai bentuk ideal, seperti distribusi normal, bahkan sebaliknya, kita sering menemukan bentuk yang cenderung tidak normal (skewed atau multimodal) karena keragaman dari sampling. Keragaman ini terjadi apabila ukuran sampel yang terlalu sedikit, misalnya kurang dari 8–12 (Keppel & Wickens, 2004; Tabachnick & Fidell, 2007), atau apabila terdapat outliers. Outlier biasanya terjadi karena adanya kesalahan, terutama kesalahan dalam entri data, salah dalam pemberian kode, kesalahan partisipan dalam mengikuti instruksi, dan lain sebagainya.

Beberapa contoh kasus yang sebaran datanya cenderung tidak normal misalnya:

  • Banyaknya parasit dalam kehidupan liar
  • Perhitungan jumlah bakteri
  • Data dalam bentuk proporsi atau persentase
  • Skala Arbitrary, seperti pengujian 10 skala uji rasa
  • Penimbangan objek yang sangat kecil, berhubungan dengan keterbatasan alat penimbangan.

Hal lain yang bisa merusak asumsi kenormalan ini adalah apabila dalam melakukan pengacakan (randomization) tidak sesuai dengan prinsip pengacakan suatu rancangan percobaan. Hal ini memungkinkan data akan menyebar secara tidak normal.

1.2. Konsekuensi

Konsekuensi akibat data yang tidak menyebar normal adalah akan menyebabkan keputusan yang di bawah dugaan (under estimate) atau diatas dugan (over estimate) terhadap taraf nyata percobaan yang sudah ditentukan (Kesalahan Jenis I).

Meskipun demikian, harus diingat bahwa dalam asumsi analisis ragam (syarat kecukupan model), uji kenormalan merupakan hal yang tidak terlalu penting dibandingkan dengan uji lainnya, asalkan:

  • Ukuran contoh yang besar dan jumlah sampel yang seimbang.
  • Sepanjang seluruh sampel data mempunyai distribusi yang hampir sama dan jumlah sampel sama atau hampir sama dan tidak ada penyimpangan yang ekstrim, tidak diperlukan pengujian kenormalan.

1.3. Hubungan dengan kehomogenan ragam

Sebenarnya ada hubungan simultan antara data yang menyebar secara normal dan data yang mempunyai ragam homogen. Data yang ragamnya homogen akan menyebar secara normal, tetapi data yang menyebar secara normal tidak selalu mempunyai ragam yang homogen.

1.4. Pengujian Kenormalan:

Kita dapat memeriksa asumsi normalitas dengan berbagai cara.

  • Uji kenormalan harus dilaksanakan pada masing-masing kombinasi perlakuan (cell by cell basis)
  • Periksa outliers, kemiringan (skewness) dan bimodality.
    • Histogram dan Stem-and-Leaf-Plot dari nilai observasi atau residual
    • Box plot
      • Boxplots dari pengamatan atau residu dalam setiap perlakuan (kelompok) harus simetris.
      • data pengamatan atau residual seharusnya tidak simetris (Side-by-side boxplots)
    • Koefisien kemiringan (skewness) and kurtosis
      • Sampel dari distribusi miring akan menunjukkan hubungan positif antara nilai rata-rata dan varians.
    • Plot grup Rata-rata perlakuan vs. residual
    • Plot grup Rata-rata vs Varians seharusnya tidak menunjukkan adanya korelasi
      • Nilai rata-rata dan varians yang berasal dari distribusi normal bersifat independen (saling bebas) sehingga plot sampel rata-rata terhadap varians sampel harus menunjukkan tidak ada hubungan.
    • Normal Probabilitas plot antara nilai residual dengan nilai prediksi atau observasi, juga cukup informatif.
      • Data dikatakan berdistribusi normal apabila plot data tersebut mengikuti garis normal (garis diagonal )
  • Formal Test: Shapiro-Wilk test; Kulmogorov-Smirnov test
    • Ada juga beberapa tes formal normalitas (misalnya uji Shapiro-Wilks tes; goodness-of-fit seperti uji Kulmogorov-Smirnov), namun menurut beberapa literatur, metode grafis jauh lebih informatif dalam memeriksa asumsi ANOVA sebelum analisis ragam dilakukan.

1.5. Solusi

  • Usahakan banyaknya ulangan sama untuk setiap perlakuan karena ukuran sampel yang seragam sangat handal terhadap ketidaknormalan.
  • Periksa outlier, hilangkan apabila point data tersebut tidak refresentatif atau cek kembali kebenaran data tersebut
  • Pendekatan selanjutnya untuk mengurangi pelanggaran normalitas adalah memangkas nilai-nilai data pengamatan yang paling ekstrim, dengan tujuan untuk mengurangi pengaruh dari skewness dan kurtosis, misalnya, membuang 5 persen bagian atas dan bawah dari suatu distribusi (Anderson, 2001).
  • Transformasi data
  • Uji non parametrik

» Pengujian ketidaknormalan data pengamatan akan dibahas pada topik tersendiri


2. Kehomogenan Ragam (homoskedastisitas)

Asumsi lain yang mendasari analisis ragam adalah kehomogenan ragam atau asumsi homoskedastisitas (homoscedasticity). Homoskedastisitas berarti bahwa ragam dari nilai residual bersifat konstan. Asumsi homogenitas mensyaratkan bahwa distribusi residu untuk masing-masing perlakuan/kelompok harus memiliki ragam yang sama. Dalam prakteknya, ini berarti bahwa nilai Yij pada setiap level variabel independen masing-masing beragam di sekitar nilai rata-ratanya.

  • Ragam nilai residual dan ragam data pengamatan dalam grup yang sama seharusnya homogen
  • Dampak ketidakhomogenan ragam lebih serius dibandingkan dengan ketidaknormalan data karena dapat mempengaruhi Uji-F. Hal ini akan meningkatkan kesalahan tipe I (tampak seperti ada pengaruh dari perlakuan padahal sebenarnya tidak ada)
  • Box plot data pengamatan seharusnya tersebar merata diantara kelompok perlakuan (among grup)
  • Sebaran residual harusnya merata pada saat diplotkan dengan nilai rata-ratanya

Ragam yang heterogen merupakan penyimpangan asumsi dasar pada analisis ragam. Data yang seperti ini tidak layak untuk dianalisis ragam. Artinya untuk bisa dianalisis ragam, data harus mempunyai ragam yang homogen.

2.1. Penyebab Heteroskedastisitas

Pertama, penentuan taraf atau klasifikasi dari faktor (variabel independent), misalnya jenis kelamin, varietas, mempunyai keragaman alami yang unik dan berbeda. Kedua, manipulasi faktor perlakuan yang menyebabkan suatu objek (tanaman, peserta, dsb) mempunyai karakteristik atau perilaku yang cenderung lebih sama atau berbeda dibandingkan dengan kontrol. Ketiga, keragaman dari respons (variabel dependent) berhubungan dengan ukuran sampel yang kita ambil. Keragaman bisa menjadi serius apabila ukuran sampel tidak seimbang (Keppel & Wickens, 2004).

2.3. Konsekuensi Heteroskedastisitas

Ragam yang tidak homogen ditambah dengan ukuran sampel yang tidak sama, dapat menjadi masalah serius pada pengujian hipotesis dengan ANOVA. Pelanggaran terhadap asumsi ini lebih serius dibandingkan dengan asumsi Normalitas, karena akan berdampak serius terhadap kepekaan hasil pengujian analisis ragam. Wilcox et al. (1986) dengan menggunakan data simulasi membuktikan bahwa:

  • dengan empat perlakuan/kelompok dan ukuran contoh (n) sama, yaitu sebelas, rasio standar deviasi terbesar dengan terkecil = 4:1 (berarti rasio ragam = 16:1) menghasilkan tingkat kesalahan Tipe I untuk taraf nyata 0.05 adalah sebesar 0.109.
  • Selanjutnya, dengan batasan yang sama seperti di atas, namun ukuran sampelnya yang berbeda, yaitu 6, 10, 16 dan 40, laju kesalahan Tipe I dapat mencapai 0,275.

Ragam yang lebih besar dengan ukuran sampel yang lebih kecil akan mengakibatkan peningkatan tingkat kesalahan Tipe I sehingga uji F cenderung liberal dimana nilai taraf nyata yang kita tentukan 0.05, pada kenyataannya nilai α tersebut lebih longgar, misalnya 0.10. Sebaliknya, Ragam yang lebih besar dengan ukuran sampel yang lebih besar mengakibatkan berkurangnya power, sehingga uji F cenderung lebih konservatif dimana nilai taraf nyata yang kita tentukan 0.05, pada kenyataannya nilai α tersebut lebih ketat, misalnya 0.01 (Coombs et al. 1996, Stevens, 2002).

2.4. Uji kehomogenan ragam

Terdapat beberapa alternatif untuk menguji apakah data percobaan sudah memenuhi asumsi kehomogenen ragam atau tidak.

  • Metode Grafis:
    • Side-by-side boxplots.
      • Boxplots data pengamatan dalam setiap perlakuan/kelompok sebarannya harus mirip.
    • Plot antara nilai residual dengan nilai rata-ratanya
      • Sebaran nilai residual pada setiap rata-rata perlakuan/kelompok harus mirip.
    • Variance/Standard Deviation/IQR statistics
  • Uji Formal:
    • Terdapat beberapa tes formal untuk menguji kehomogenan ragam, misalnya uji Bartlett’s, Hartley’s, Cochran, Levene’s.

Harus diperhatikan bahwa di antara uji Formal tersebut ada yang sangat sensitif terhadap ketidak normalan data, terutama terhadap data yang sebarannya cenderung menjulur ke arah kanan (Positif skewness). Kedua, dan ini lebih penting, jika ukuran sampel kecil, uji tes formal terkadang gagal dalam menolak H0, sehingga kita akan menganggap bahwa ragam sudah homogen. Dengan kata lain, apabila data tidak menyebar normal, maka uji kehomogenan ragam tersebut tidak bisa diandalkan.

Akhirnya, uji homogenitas ragam hanya memberikan sedikit informasi tentang penyebab yang mendasari ketidakhomogenan ragam, dan teknik diagnostik (misalnya plot residual) masih tetap dibutuhkan untuk memutuskan tindakan perbaikan yang sesuai.

2.5. Solusi

  • Menggunakan nilai taraf nyata yang lebih ketat, misalnya 0.025 (sehingga kesalahan jenis I diharapkan akan tetap berada di bawah 0.05)
  • Transformasi data
  • Menggunakan model pendugaan lain yang lebih sesuai

» Pengujian Kehomogenan Ragam data pengamatan akan dibahas pada topik tersendiri


3. Independensi (Kebebasan Galat / Independency)

Nilai residual dan data setiap pengamatan satuan percobaan harus saling bebas, baik di dalam perlakuan itu sendiri (within group) atau diantara perlakuan (between group). Apabila kondisi ini tidak terpenuhi, akan sulit untuk mendeteksi perbedaan nyata yang mungkin ada.

3.1. Penyebab Ketidakbebasan

  • Tidak bebas:
    • Terdapat korelasi positif diantara ulangan dalam masing-masing kelompok perlakuan (within group) yang akan menghasilkan nilai ragam yang berada di bawah dugaan (under estimate) sehingga akan meningkatkan nilai kesalahan tipe I (nilai α – pengaruh perlakuan yang terdeteksi tidak benar). Sering terjadi pada pengamatan yang dilakukan secara berulang pada satuan percobaan yang sama (repeated measure).
    • Terdapat korelasi negatif diantara ulangan dalam masing-masing kelompok perlakuan (within group) yang akan menghasilkan nilai ragam yang berada di atas dugaan (over estimate) sehingga akan meningkatkan nilai kesalahan tipe II (nilai β – pengaruh yang sebenarnya tidak terdeteksi)
    • Respons pada salah satu perlakuan mempengaruhi respons pada perlakuan lainnya, misalnya hewan yang bergerak ke perlakuan lainnya.
  • Asumsi ini harusnya dipertimbangkan pada saat perancangan sebelum percobaan dimulai.

3.2. Konsekuensi ketidakbebasan galat

Seringkali uji independensi ini di abaikan oleh para peneliti, terutama peneliti dalam ilmu-ilmu sosial dan perilaku. Hays (1981) dan Stevens (2002) menyatakan bahwa pelanggaran terhadap independensi data merupakan masalah yang sangat serius dalam analisis ragam. Konsekuensinya akan menyebabkan inflasi terhadap nilai taraf nyata (α) yang sudah ditentukan. Sebagai contoh, Stevens (2002) menyatakan bahwa meskipun indikasi adanya independensi di antara nilai pengamatan hanya sedikit, namun akan meningkatkan nilai kesalahan tipe I (nilai α – pengaruh perlakuan yang terdeteksi tidak benar) beberapa kali lebih besar, misalnya apabila taraf nyata yang kita tentukan sebesar 0.05, nilai taraf nyata aktual akan jauh lebih besar (misalnya, 0.10 atau 0.20).

3.3. Pengujian Ketidakbebasan Galat

  • Plot antara nilai rata-rata perlakuan/kelompok dengan nilai ragamnya
    • Apabila nilai perlakuan saling bebas, datanya akan tersebar di sekitar garis horisontal
    • Apabila independen, sebarannya akan mengikuti pola tertentu, misalnya linier, kuadratik, atau bentuk kurva lainnya.

3.4. Solusi

  • Asumsi kebebasan galat ini biasanya bisa terpenuhi apabila pengacakan satuan percobaan sudah dilakukan dengan benar (sesuai dengan prinsip-prinsip perancangan percobaan). Jadi apabila susunan satuan percobaan anda tersusun secara sistematis, maka kemungkinan asumsi kebebasan galat akan dilanggar.
  • Transformasi data yang sesuai akan membantu dalam menghilangkan pengaruh dependensi ini.

» Pengujian independensi data pengamatan akan dibahas pada topik tersendiri


4. Pengaruh Aditif

Pengaruh dari faktor perlakuan dan lingkungan bersifat aditif, maksudnya tinggi rendahnya respons semata-mata akibat dari pengaruh penambahan perlakuan dan atau kelompok.

Pada model linier di atas, perlakuan (τi)
dan galat (εij) bersifat aditif, dengan kata lain pengaruh penambahan yang berasal dari perlakuan bersifat konstan untuk setiap ulangan dan pengaruh ulangan bersifat konstan untuk setiap perlakuan. Nilai Respons (Yij) merupakan nilai rata-rata umum ditambah dengan penambahan dari perlakuan dan galat.

Agar lebih mudah memahami, perhatikan ilustrasi berikut: Misalkan nilai rata-rata umum (μ) = 8 dan pengaruh penambahan dari masing-masing perlakuan (τi) serta pengaruh penambahan dari masing-masing ulangan/kelompok (βj) seperti terlihat pada tabel berikut. Untuk mempermudah pemisalan, anggap nilai εij = 0, sehingga nilai respons Yij = μ+ τi + βj + εij bisa dihitung.

Faktor A

Faktor B (Ulangan/Kelompok) Selisih Pengaruh ulangan
β1 = +1 β1= +2
τ1 = +1 (8+1+1) = 10 (8+1+2) = 11 1
τ2 = +3 (8+3+1) = 12 (8+3+2) = 13 1
Selisih Pengaruh Perlakuan 2 2

Pada tabel di atas anda perhatikan terlihat bahwa pengaruh perlakuan konstan pada setiap ulangan dan pengaruh ulangan (atau pengaruh kelompok bila anda menggunakan kelompok) selalu konstan pada semua perlakuan. Bila ini yang terjadi, maka data tersebut adalah bersifat aditif. Namun, apabila pengaruh tersebut tidak bersifat aditif, melainkan multiplikatif, maka data reponsnya akan tampak seperti pada tabel berikut.

Faktor A Ulangan
β1 = +1 β1= +2 Selisih ulangan
τ1 = +1 (8x1x1) = 9 (8x1x2) = 10 1
τ2 = +3 (8x3x1) = 11 (8x3x2) = 14 3
Selisih Perlakuan 2 4

Perhatikan, selisih baik dari pengaruh penambahan perlakuan ataupun kelompok tidak lagi bersifat konstan! Apabila ada pengaruh penambahan dari faktor lain diluar percobaan kita, maka pengaruh dari faktor yang kita cobakan sudah tidak bersifat aditif lagi, melainkan multiplikatif.

Lebih jelasnya, perhatikan perbandingan antara pengaruh aditif dan multiplikatif untuk rancangan acak kelompok berikut ini.

Tabel Perbandingan antara pengaruh aditif dan multiplikatif

Faktor A
Faktor B τ1= +1 τ2= +2 τ3= +3
β1= +1 2 3 4 Pengaruh aditif
1 2 3 Pengaruh multiplikatif
0 0.30 0.48 Pengaruh multiplikatif (log)
β2= +5 6 7 8 Pengaruh aditif
5 10 15 Pengaruh multiplikatif
0.70 1.00 1.18 Pengaruh multiplikatif (log)

4.1. Penyebab

Ada pengaruh dari faktor lain diluar faktor yang kita cobakan:

  • Pengaruh dari efek sisa penelitian sebelumnya.
  • Terdapat interaksi antara perlakuan dengan faktor lain yang tidak dimasukkan dalam model, seperti jenis kelamin, jenis varietas, dan sebagainya.
  • Dalam Rancangan Acak Kelompok, biasanya terjadi interaksi antara perlakuan dengan kelompok

4.2. Hubungan dengan kehomogenan ragam

Biasanya apabila data bersifat aditif, maka data tersebut mempunyai ragam yang homogen. Sebaliknya apabila data bersifat tidak aditif, maka data tersebut mempunyai ragam yang heterogen. Artinya data yang tidak memenuhi pengaruh aditif akan memiliki keragaman galat yang besar. Untuk melihat ragam galat dari percobaan, anda bisa perhatikan kuadrat tengah (KT) galat pada tabel analisis ragam anda. Semakin besar KT galat anda, maka akan mengindikasikan semakin besar keragaman pada percobaan anda.

Pengaruh perlakuan dan kelompok dikatakan aditif apabila pengaruh perlakuan selalu tetap pada setiap ulangan atau kelompok dan pengaruh ulangan atau kelompok selalu tetap untuk semua perlakuan.

4.3 Uji Ketakaditifan:

Model linier RAK: Yij = μ+ τi + βj + εij. Nilai galat, εij disumsikan bersifat independent, homogen, dan berdistribusi normal. Model bersifat aditif apabila interaksi antara perlakuan dan kelompok (τi * βj) tidak signifikan. Apabila terdapat interaksi, maka uji-F tidak lagi efisien dan ada kemungkinan terjadinya penarikan kesimpulan yang salah karena pengaruh dari kedua faktor tidak lagi bersifat aditif melainkan multiplikatif.

Uji untuk menguji apakah model bersifat aditif atau tidak adalah dengan menggunakan metode Tukey.

SS (ketidakaditifan) = (∑∑ τi βj y ij ) 2 / ( ∑ τi 2 )( ∑ βj 2 )

» Pengujian independensi data pengamatan akan dibahas pada topik tersendiri

4.4. Solusi:

  • Transformasi Log

5. Kesimpulan

Dari keempat asumsi di atas, asumsi yang paling umum dilanggar adalah asumsi kehomogenan ragam. Apabila asumsi kehomogenan ragam terpenuhi, biasanya asumsi kenormalan juga terpenuhi, namun hal sebaliknya tidak selalu terjadi.

Reff:

Angela Dean and Daniel Voss. 1999. Design and Analysis of Experiments. Springer Verlag New York, Inc.

Gerry P. Quinn & Michael J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press

Glenn Gamst, Lawrence S. Meyers, and A. J. Guarino. 2008. Analysis of Variance Designs A Conceptual and Computational Approach with SPSS and SAS. Cambridge University Press

Shirley Dowdy, Stanley Weardon, Daniel Chilko. 2004. Statistics for Research (Third Edition). John Wiley & Sons, Inc

Plus Refferensi lainnya.

About these ads

5 responses to “Asumsi-Asumsi ANOVA Satu Faktor

  1. Riska Juni 18, 2010 pukul 9:49 pm

    Mas, numpang nanya..
    saya khan ngangkat skripsi tentang split plot dengan RAL, meneliti tentang menguji prosedur perhitungan ketepatan modelnya..pake R2, R2-adjusted, PRESS dan R2-prediction..
    nah pada contoh kasusnya..galat pada anak petaknya tidak normal..estimasi yang saya gunakan pake metode kuadrat terkecil..
    nah yang ingin saya tanyakan…apakah galat yang tidak normal itu mempengaruhi nilai duga pengamatan (Y topi) dan apakah karena galat yang tidak normal tersebut kita tidak bisa mengambil kesimpulan dari nilai PRESS dan R2-predictionnya yang telah dihitung..
    Tolong dibalas ya mas..Terima Kasih..

  2. yus September 22, 2010 pukul 10:17 am

    untuk memenuhi asumsi normalitas dan homogenitas pada RAL 3 X 3 apakah yang diuji asumsi tersebut harus nilai residual dari masing masing perlakuan ataukah keseluruhan perlakuan dan ulangan :
    ex :
    perlakuan A = 3 ulangan (di uji kenormalan dan homogenitasnya)
    perlakuan B = 3 ulangan (di uji kenormalan dan homogenitasnya)
    perlakuan c = 3 ulangan ( (di uji kenormalan dan homogenitasnya)
    ataukah :
    ke 3 perlakuan dan 3 ulangan di jadikan satu menjadi 9 data…?
    taks to informasinya

    • Paul B Timotiwu Desember 4, 2010 pukul 7:13 am

      Biasanya untuk mempermudah bagi para aplikator experimental design, untuk RAL uji kehomogenan ragam cukup menggunakan uji Batlett atau Levene.

      • Smartstat Desember 4, 2010 pukul 2:16 pm

        Yup.., setuju.. Paul.., terimakasih masukannya..

        Namun seperti pada point 2.4 di atas, Uji Kehomogenan Ragam: Harus diperhatikan bahwa di antara uji Formal tersebut ada yang sangat sensitif terhadap ketidak normalan data, terutama terhadap data yang sebarannya cenderung menjulur ke arah kanan (Positif skewness). Kedua, dan ini lebih penting, jika ukuran sampel kecil, uji tes formal terkadang gagal dalam menolak H0, sehingga kita akan menganggap bahwa ragam sudah homogen. Dengan kata lain, apabila data tidak menyebar normal, maka uji kehomogenan ragam tersebut tidak bisa diandalkan. Uji homogenitas ragam hanya memberikan sedikit informasi tentang penyebab yang mendasari ketidakhomogenan ragam, dan teknik diagnostik (misalnya plot residual) masih tetap dibutuhkan untuk memutuskan tindakan perbaikan yang sesuai.

        @Yus: maaf, bru dbls, saya kira dah di balas semuanya…
        RAL 3×3, he2.., bingung juga maksudnya tuh, sy kira ada 2 faktor masing-masing ada 3 level (Faktorial).
        Namun apabila di lihat dari pertanyaan, sepertinya Faktor tunggal yg terdiri dari 3 level dan di ulang 3 kali. Betul, untuk uji kenormalan dilakukan pada masing-masing perlakuan.
        Uji Kehomogenan Ragam: nah kalo uji kehomogenan Ragam, mungkin tidak tepat Yus. Pada perlakuan A tidak bisa diuji Homogenitasnya (perlakuan A cuma punya satu ragam kan? jadi tidak bisa dibandingkan), demikian juga untuk perlakuan B dan C. Maksudnya begini Yus, Perlakuan A dihitung ragamnya, demikian juga perlakuan B dan C, selanjutnya dibandingkan apakah ketiga ragam tersebut (Ragam A, B, dan C) homogen??
        Ho: ragam A = ragam B = ragam C (homogen)
        H1: tidak semua ragam homogen

  3. hasanah Desember 14, 2013 pukul 7:46 am

    pak, bagaimana saya rencananya akan menggunakan uji anava 2 jalan, bagaimana kalau data yng diperoleh tidak homogen?

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 192 pengikut lainnya.