Smart Statistik

Seputar Satistik dan Perancangan Percobaan

Category Archives: Statistika

Stemplot (Stem-and-Leaf Plot)

Penyajian lain yang mirip dengan histogram adalah Stemplot. Stemplot juga dikenal sebagai stem-and-leaf plot atau apabila diterjemahkan ke dalam bahasa indonesia berarti plot batang dan daun. Di dalam statistik, stemplot merupakan alat untuk menyajikan data kuantitatif dalam format grafis, mirip dengan histogram, yaitu untuk membantu dalam memvisualisasikan bentuk distribusi data yang sering digunakan dalam analisis eksplorasi. Stemplot diperkenalkan oleh Arthur Bowley di awal tahun 1900-an. Namun penggunaannya secara umum baru dimulai pada tahun 1980 setelah John Tukey’s mempublikasikan Exploratory Data Analysis pada tahun 1977.

Stem-and-leaf plot memberikan informasi lebih banyak tentang nilai yang sebenarnya dibanding histogram. Seperti dalam histogram, panjang setiap batang sesuai dengan jumlah kejadian yang jatuh ke dalam interval tertentu. Pada Histogram. kita hanya bisa melihat nilai frekuensi dari data namun kita tidak tahu berapa nilai angka sebenarnya. Berbeda dengan histogram, pada SLP selain kita bisa mengetahui nilai frekuensinya, kita pun bisa tau berapa nilai data sebenarnya. Hal ini dilakukan dengan membagi nilai-nilai yang diamati menjadi dua komponen, stem dan leaf. Baca pos ini lebih lanjut

Korelasi Pearson

Korelasi Pearson merupakan salah satu ukuran korelasi yang digunakan untuk mengukur kekuatan dan arah hubungan linier dari dua veriabel. Dua variabel dikatakan berkorelasi apabila perubahan salah satu variabel disertai dengan perubahan variabel lainnya, baik dalam arah yang sama ataupun arah yang sebaliknya.  Harus diingat bahwa nilai koefisien korelasi yang kecil (tidak signifikan) bukan berarti kedua variabel tersebut tidak saling berhubungan.  Mungkin saja dua variabel mempunyai keeratan hubungan yang kuat namun nilai koefisien korelasinya mendekati nol, misalnya pada kasus hubungan non linier. Dengan demikian, koefisien korelasi hanya mengukur kekuatan hubungan linier dan tidak pada hubungan non linierHarus diingat pula bahwa adanya hubungan linier yang kuat di antara variabel tidak selalu berarti ada hubungan kausalitas, sebab-akibat.

Baca pos ini lebih lanjut

Mengenal Box-Plot (Box and Whisker Plots)

Baik histogram dan stem-and-leaf plots berguna untuk memberikan gambaran ukuran tendensi sentral dan kesimetrisan data pengamatan. Penyajian grafis lainnya yang bisa merangkum informasi lebih detail mengenai distribusi nilai-nilai data pengamatan adalah Box and Whisker Plots atau lebih sering disebut dengan BoxPlot atau Box-Plot (kotak-plot) saja. Seperti namanya, Box and Whisker, bentuknya terdiri dari Box (kotak) dan whisker. Pada gambar di bawah, Box adalah kotak berwarna hijau dan whisker garis berwarna biru.

Gambar Box-Plot

Gambar Box-Plot

Baca pos ini lebih lanjut

Analisis data eksploratif

Langkah pertama dalam menganalisis data adalah mempelajari karakteristik dari data tersebut. Terdapat beberapa alasan penting yang perlu kita pertimbangkan secara cermat sebelum analisis data sebenarnya kita lakukan. Alasan pertama pemeriksaan data adalah untuk memeriksa kesalahan-kesalahan yang mungkin terjadi pada berbagai tahap, mulai dari pencatatan data di lapangan sampai pada entry data pada komputer. Alasan berikutnya adalah untuk tujuan eksplorasi data sehingga kita bisa menentukan model analisis yang tepat. Baca pos ini lebih lanjut

Distribusi Frekuensi

Hasil pengukuran yang kita peroleh disebut dengan data mentah. Besarnya hasil pengukuran yang kita peroleh biasanya bervariasi. Apabila kita perhatikan data mentah tersebut, sangatlah sulit bagi kita untuk menarik kesimpulan yang berarti. Untuk memperoleh gambaran yang baik mengenai data tersebut, data mentah tersebut perlu di olah terlebih dahulu.

Pada saat kita dihadapkan pada sekumpulan data yang banyak, seringkali membantu untuk mengatur dan merangkum data tersebut dengan membuat tabel yang berisi daftar nilai data yang mungkin berbeda (baik secara individu atau berdasarkan pengelompokkan) bersama dengan frekuensi yang sesuai, yang mewakili berapa kali nilai-nilai tersebut terjadi. Daftar sebaran nilai data tersebut dinamakan dengan Daftar Frekuensi atau Sebaran Frekuensi (Distribusi Frekuensi). Baca pos ini lebih lanjut

Ukuran Penyebaran (Measures of Dispersion)

Ukuran tendensi sentral (mean, median, mode) merupakan nilai pewakil dari suatu distribusi frekuensi, tetapi ukuran tersebut tidak memberikan gambaran informasi yang lengkap mengenai bagaimana penyebaran data pengamatan terhadap nilai sentralnya. Sebagai contoh, kita mempunyai distribusi hasil panen dua varietas padi (kg per plot), masing-masing terdiri dari 5 plot. Andaikan distribusi datanya sebagai berikut: Baca pos ini lebih lanjut

Ukuran Pemusatan Data (Central Tendency)

Salah satu aspek yang paling penting untuk menggambarkan distribusi data adalah nilai pusat data pengamatan (tendensi sentral). Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran tendensi sentral.

Terdapat tiga ukuran tendensi sentral yang sering digunakan, yaitu:

Statistika Deskriptif

Statistik adalah sekumpulan prosedur untuk mengumpulkan, mengukur, mengklasifikasi, menghitung, menjelaskan, mensintesis, menganalisis, dan menafsirkan data kuantitatif yang diperoleh secara sistematis. Secara garis besar, statistik dibagi menjadi dua komponen utama, yaitu Statistik Deskriptif dan Statistik inferensial. Statistik deskriptif menggunakan prosedur numerik dan grafis dalam meringkas gugus data dengan cara yang jelas dan dapat dimengerti, sementara Statistik inferensial menyediakan prosedur untuk menarik kesimpulan tentang populasi berdasarkan sampel yang kita amati. Statistik Deskriptif membantu kita untuk menyederhanakan data dalam jumlah besar dengan cara yang logis. Data yang banyak direduksi dan diringkas sehingga lebih sederhana dan lebih mudah diinterpretasi. Baca pos ini lebih lanjut

Pengertian Statistika

Statistika adalah cabang ilmu matematika terapan yang terdiri dari teori dan metoda mengenai bagaimana cara mengumpulkan, mengukur, mengklasifikasi, menghitung, menjelaskan, mensintesis, menganalisis, dan menafsirkan data yang diperoleh secara sistematis.

Dengan demikian, didalamnya terdiri dari sekumpulan prosedur  mengenai bagaimana cara:

  • Mengumpulkan data
  • Meringkas data
  • Mengolah data
  • Menyajikan data
  • Menarik kesimpulan dan interpretasi data berdasarkan kumpulan data dan hasil analisisnya Baca pos ini lebih lanjut

Populasi dan Sampel

Gambaran Sampel Representatif

Populasi

Populasi merupakan keseluruhan (universum) dari objek penelitian yang dapat berupa manusia, hewan, tumbuh-tumbuhan, gejala, nilai, peristiwa, sikap hidup, dan sebagainya yang menjadi pusat perhatian dan menjadi sumber data penelitian. Apabila kita lihat definisi tersebut, pengertian populasi bisa sangat beragam sehingga kita harus mendefinisikan populasi tersebut dengan jelas dan tepat. Baca pos ini lebih lanjut